

Case Study Booklet on Energy Efficient Technologies in Cement Industry

Case Study Booklet on

Energy Efficient Technologies in

Cement Industry

Disclaimer

© 2015, CIII Confederation of Indian Industry

All rights reserved.

For private circulation only

This report is part of Shakti Sustainable Energy Foundation (SSEF) and CII – Godrej GBC's effort to assist the Indian industry achieve greater energy efficiency levels by installation of energy efficient technologies.

The views expressed in this document do not necessarily reflect the views of Shakti Sustainable Energy Foundation. The Foundation also does not guarantee the accuracy of any data included in this publication nor does it accept any responsibility for the consequences of its use.

While every care has been taken in compiling this report, CII-Godrej GBC and Shakti Sustainable Energy Foundation accept no claim for any kind of compensation, if any entry is wrong, abbreviated, omitted or inserted incorrectly either as to the wording space or position in the booklet. This booklet is only an attempt to create an awareness on Energy management & sharing of energy efficient technologies adopted in Indian Cement Industry.

Published by Confederation of Indian Industry
CII - Sohrabji Godrej Green Business Centre
Survey # 64, Kothaguda Post,
R R District, Hyderabad - 500 084, India

FOREWORD

CII-Sohrabji Godrej Green Business Centre, as part of its World Class Energy Efficiency initiative, has been releasing several publications on a regular basis to make the latest information available to all stakeholders in the cement industry. One such initiative is the release of this *Case Study Booklet on Energy Efficient Technologies in Cement Industry in 2015*.

The Case Study Booklet on Energy Efficient Technology in Cement Industry is an outcome of the collection of Energy Efficient Technologies adopted by Indian Cement Industry. This booklet is

an effort to accelerate adoption of the energy efficient technologies and to overcome information and knowledge barriers in making transition towards the energy efficiency pathways.

In continuing the Indian cement industry tradition of knowledge sharing it is the right time to learn from the peers on best technology and practices adopted. This booklet will be useful for the entire Indian cement industry to identify the potential of energy efficient technologies.

We warmly invite you to please share your feedback to us at encon@cii.in. We look forward to your continued support in further greening Indian Cement sector. Your feedback will encourage us at CII-Sohrabji Godrej Green Business Centre to take such initiatives in future.

G Jayaraman

Chairman, Green Cementech 2015 &

Executive President, Birla Corporation Ltd.,

Page No.

Table of Contents

1.0	Executive Summ	nary	02
2.0	Energy Consum	ption trend	04
3.0	Case studies on	Energy Efficient Technology	
4.0	Technology 1: Ir	nstallation of latest generation high efficiency clinker coolers	07
		Up gradation of conventional cooler with IKN cooler at Jaypee Rewa, Madhya Pradesh	08
	Case Study 2:	Installation of IKN cooler at Ultratech Cement, Rawan Cement Works	10
		Upgradation of conventional cooler with FLS Cross Bar cooler at Ultratech Cement, Reddipalayam, TamilNadu	12
5.0	Technology 2: Ir	nstallation of Waste Heat Recovery System	14
		Installation of WHRS at Birla Corporation Ltd., Satna Cement Works, Satna, Madhya Pradesh	17
	Case Study 5:	Installation of WHRS at J K Lakshmi Cement Ltd., Sirohi	20
6.0	Technology 3: Ir	nstallation of HT VFD/ SPRS in place of GRR for Speed control	23
	Case Study 6:	Installation of MV VFD for PH fan at The Ramco Cements Ltd., Alathiyur	24
	Case Study 7:	Installation of MV VFD for Kiln Hybrid Bag house fan at Mangalam Cement	26
7.0	Technology 4: Ir	nstallation of High Efficiency Separators	27
	•	Upgradation of Raw mill & Coal mill classifier with energy efficient classifier & vortex rectifier at The Ramco Cements Ltd., Alathiyur	28
	Case Study 9:	Cement mill Separator performance of best operating plant	32
8.0	Technology 5: Ir	ncreasing the Thermal Substitution Rates in Cement Plants	33
		Alternative Fuel utilization at Ultratech Cement, Reddipalayam Cement Works, TamilNadu	34
	•	Installation of HOTDISC for increasing thermal substitution rate at Kesoram Industries Ltd., Unit Vasavadatta Cement, Sedam, Karnataka	38
9.0	Technology 6: Ir Manufacturing	ncrease the PPC Production / % addition of Fly Ash in PPC	42
		Increasing fly ash addition in PPC by superfine fly ash grinding- Ambuja Cement Rabriyawas, Rajasthan	43
10	Summary & Cor	nclusion	46

ACKNOWLEDGMENTS

CII-Sohrabji Godrej Green Business Centre would like to express its sincere and special gratitude to the entire Indian cement industry for their continuous support in this initiative, providing the required data for completing this Case Study Booklet, which makes this booklet more useful to all stake holders.

CII-Godrej GBC acknowledges with thanks the co-operation and the support extended by the suppliers for sharing their technology advancements and case studies implemented in the cement industry.

We would like to place our vote of thanks for the cement technical experts and associations for sparing their valuable time in offering inputs and suggestions in bringing out this booklet.

The interactions and deliberations with the industry, suppliers and sector experts through the workshops and web meeting and the whole exercise was thoroughly a rewarding experience for CII.

We deeply express our sincere thanks to the following Cement Industry for openly sharing the technical information on the energy efficient technology and the write ups provided for the booklet deserve a special mention.

- Jaypee Cement, Rewa
- Ultratech Cement, Rawan Cement Works
- Ultratech Cement, Reddipalayam
- ❖ Birla Corporation Ltd., Satna Cement Works
- J K Lakshmi Cement, Sirohi
- The Ramco Cement Ltd., Alathiyur
- Mangalam Cement, Kota
- ❖ Kesoram Industries Ltd., Unit Vasavadatta Cement, Sedam
- ❖ Ambuja Cement Ltd., Rabriyawas, Rajasthan

1.0 EXECUTIVE SUMMARY

Indian cement industry is one of the highly energy intensive industry which has a robust growth trajectory over the past decade. Indian cement industry is the 2^{nd} largest producer of cement in the world with a total installed capacity of 350 million MTPA 1 . The per-capita consumption of cement has increased from 28 kg in 1980-81 to 190 kg 2 in 2013-14, led by the growth in sectors like real estate and construction.

Economic growth is contingent upon the growth of cement industry. Consumption of cement is taken to be an indicator of economic development. The greater the infrastructure growth of a country, greater will be the consumption of cement.

On the energy conservation front, the best levels achieved by the Indian cement industry, a t about 680 kcal/kg clinker and around 66 kWh per tonne cement, are comparable with the best achieved levels in the world. However, a large number of plants installed before the 1990's are operating at relatively high energy consumption levels. Although some of these legacy plants have been modernized to a limited extent by retrofitting new technologies, they should, on priority, bring their energy consumption levels closer to the best achieved levels in the industry by further modernization and adoption of best available processes and technologies.

CII-Godrej GBC undertook the initiative of preparing Technology Compendium on Energy Saving Opportunities: Cement Sector to help the Industry achieve the PAT target. The Technology compendium comprises of various best practices and 15 technologies to save thermal and electrical energy along with the cost abatement curve. The technology compendium was circulated to all the Designated Consumers' (DCs) in cement sector. With the objective of facilitating the implementation of energy efficient technology, a questionnaire was also circulated to all DCs seeking their opinion on the technology which can be implemented at their unit. A good response was received from several DCs on the implementation of the technology. Among the identified technology in the compendium majority of the DCs have shortlisted following technologies for the implementation.

- 1. Installation of high efficiency clinker cooler
- 2. Installation of Waste Heat Recovery System
- 3. Installation of HT VFD/ SPRS in place of GRR for Speed control
- 4. Installation of High Efficiency Separators
- 5. Increasing the Thermal Substitution Rates in Cement Plants
- 6. Increase % addition of Fly Ash in PPC Manufacturing

¹ DIPP report (2014-15): http://dipp.nic.in/English/Publications/Annual Reports/Annual report.aspx

² http://www.ibef.org/industry/cement-india.aspx

In order to accelerate adoption of energy efficient technologies and to overcome the information and knowledge barriers in making transition towards the energy efficiency pathways CII-Godrej GBC has taken initiative to publish the case study booklet on the above mentioned energy efficient technology to share the information among the cement manufacturers. This booklet is expected to assist the cement industry to improve their energy efficiency levels.

The information presented for each technology is collected from various sources, cement, industry, technology suppliers and CII energy award questionnaire & award presentation.

However, implementation of some of these technologies calls for a sustained effort from the designated consumers. Some of the technologies mentioned in this booklet are capital intensive and time consuming to implement. But implementation of these projects can surely be beneficial in a long term perspective for the sector.

CII-Godrej GBC team has interacted with several technology / service providers to seek their opinion on the best available energy efficient technology (BAT) and to identify existing and in-house development technologies to assess their utility. Exhaustive Interaction happened with cement manufacturers on the benefit of the technology installed at their units.

2.0 ENERGY CONSUMPTION TRENDS

Cement industry is an energy intensive industry and third largest coal consumer in the country after power and steel industry³ requiring both electrical and thermal energy for its operation.

Cement industry accounts for around 10% of the coal and 6% of the electricity consumed by the Indian industrial sector. On an average, cement plants are spending about 35-50% of the total manufacturing cost of cement to meet their energy demands. In fact, energy cost is considered as a major factor in pricing of the cement. The breakup of manufacturing cost of cement is shown below. Around 25% of the manufacturing cost is spent on raw materials for cement manufacturing. The rest of the cost is shared among the manpower and factory overheads.

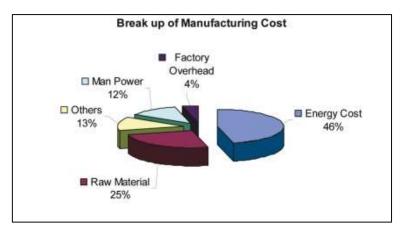
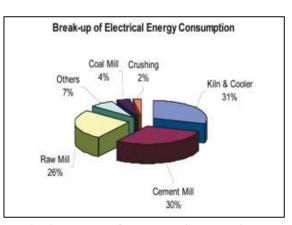



Figure -Cost break-up in cement manufacturing

ELECTRICALENERGY

Modern cement plants on an average consume about 65-75 kWh⁴ of electrical energy for producing one ton of cement. Cement plant requires electrical energy to run its Mill drives, Fans, Conveyors, Packers and for Lighting systems. Kiln and mills are major electrical power consuming areas of the cement plant. In fact, they are consuming about 60 % of total electrical energy requirement. When it comes to old plants, due to the old technology adopted and some inherent barriers, the energy

consumption is normally in the range of 80-100 kWh per ton of cement. The typical section wise electrical energy consumption is shown in the graph above.

³ Indian Coal Sector by IIFL

⁴ CII Energy Award questionnaire

THERMAL ENERGY

On an average, Indian cement plants require 723 kcal/kg⁵ clinker of thermal energy for producing one kg of clinker. The major use of thermal energy is in the kiln and pre-calciner systems. Thermal energy is needed for the raw meal processing specifically for converting the raw mix to Clinker. Pyro processing (Conversion of raw meal to clinker) is the most energy-concentrated stage in cement production. The number of stages in the pre-heater system has a major bearing on the thermal energy consumption in Kiln system.

Continuous technological up gradation and assimilation of latest technologies have been steadily increasing in the cement industry. Today, 99% of the plants use dry process technology compared to 6% in 1960.

Indian cement industry has always been a trend setter for adopting the best available energy efficient technologies. The best thermal and electrical energy consumption presently achieved in India is 680 kcal/kg clinker and 66 kWh/T cement which are comparable to the best figures of 650 kcal/kg clinker and 65 kWh/T cement in a developed country like Japan.

The specific energy consumption of the Indian Cement Plants has been reducing with continuous up-gradation of technologies and the change in process technologies. The table given below shows the progressive reduction in specific energy consumption by Indian cement industry.

	Year					
Parameters	1950-60	1970s	1980s	1990s	Post 2000	
Heat Consumption (kcal/kg clk)	1300-1600	900-1000	800-900	750-800	650-750	
Power consumption (kWh/MT cement)	115-130	110-125	105-115	95-105	80-100	

⁵ Average value from CII Energy Award questionnaire

CASE STUDIES ON ENERGY EFFICIENT TECHNOLOGIES

ENERGY EFFICIENT TECHNOLOGY 1:

Installation of latest generation high efficiency clinker coolers

The Indian cement industry, over the last several years, has increasingly adopted reciprocating grate coolers with great success. With more than 50% of cement produced from kilns less than 10 years old, reciprocating grate coolers have become common practice in the industry today, with cooler loading of about $45-50~\text{tpd/m}^2$ of cooler area. Heat from hot clinker is recovered to preheat the incoming secondary and tertiary air to improve thermal efficiency. Based on the cooling efficiency, technology adopted, and desired clinker temperature, the amount of air used in this cooling process is approximately 2.5-3~kg/kg of clinker

Conventional grate coolers provide a recuperation efficiency of 50-65%, depending on the mechanical condition and process operation of the cooler. This corresponds to a total heat loss from the cooler of about 120–150 kcal/kg clinker. Several cement kilns in India, as a result of continuous productivity increase measures, are operating at significantly higher cooler loading range than rated, with a range of 50-65 tpd/m² of cooler area; increasing the total heat loss from the cooler.

The reciprocating cooler has undergone significant design developments; the latest generation clinker coolers offering better clinker properties, and significantly lower exit gas and clinker temperatures. As a direct consequence, secondary and tertiary air temperatures offered by latest generation coolers have also increased to about 1,250°C and 1,000°C, respectively. The cooling air requirements of such coolers have also gradually reduced to about 2.2–2.4 kg/kg clinker.

While it is very attractive to adopt latest generation coolers for new plants by design, retrofitting existing conventional reciprocating coolers with latest generation coolers also offers a significant potential for electrical and thermal energy saving in the Indian cement industry. The total heat loss of latest generation clinker coolers is less than 100 kcal/kg clinker, and has a recuperation efficiency in the range of 75–80%.

Case Study No. 1

Up gradation of conventional cooler with IKN cooler at Jaypee Rewa, Madhya Pradesh

Jaypee group is the 3rd largest cement producer in the country. The group's cement facilities are located in the Satna Cluster (M.P.), which has one of the highest cement production growth rates in India.

Jaypee Rewa Plant (JRP) Unit II started as a 4500 TPD SLC kiln with a twin string five stage pre-heater, precalciner and a Folax grate cooler. The capacity was gradually enhanced 5400 TPD with several in-house improvements, including modification of pre-heater

fans, replacement of cooler fans, increase in pre-calciner volume. The earlier cooler was conventional cooler and demanding too many maintenance interventions and suffered frequent breakdowns so the company decided on a complete upgrade of the cooler. Jaypee selected IKN's pendulum cooler for up-gradation.

An upgrade with IKN pendulum cooler resulted in improved productivity, enhanced run time, and lowered thermal and electrical energy consumption.

Operating Results:

Below table shows the operational parameters before and after the IKN upgrade. A significant improvement was achieved in the run days after the upgrade. Specific heat consumption was reduced by 15-20 kcal/kg of clinker, productivity increased by approximately 200 TPD. The power in cooler section was also lowered by approximately 0.59 kWh/MT clk.

Parameters	Before	After
Production rate (TPD)	5550	5750
Tertiary Air Temp (°C)	760	930
Specific Heat Consumption (kcal/kg clk)	710	690
Power in cooler section (kWh/MT clk)	4.47	3.88
Cooler vent air temp (°C)	220	200
Clinker temp (°C)	152	132

The upgrade has resulted in improved productivity and run time and reduced thermal and electrical energy consumption.

Contact details:

Mr. G V Bhat Sr. President (Plant) Jaypee Rewa Cement Ltd. Dist. Rewa, Madhya Pradesh Email: gv.bhat@jalindia.co.in

Mr. R Madhusudan Country Head IKN Engineering (I) Pvt. Ltd Email: madhusudikn@vsnl.com

Case Study No. 2

Installation of IKN cooler at Ultratech Cement, Rawan Cement Works

Ultratech Cement, Rawan Cement Works is situated at Rawan, Dist. Baloda bazar, Bhatapara, in the state of Chhattisgarh. UTCL, Rawan has commissioned a new clinkerization unit of capacity 10000 TPD clinker, with 6 stages, 4 strings and 2 calciner ILC. The new clinkerization unit is the state of the art plant that is highly automated. The kiln & PH is KHD make whereas

clinker cooler is IKN make.

The specific heat consumption of the plant is 697 kcal/kg clinker and the total power consumption of kiln section is 13.0 kWh/MT clinker considering the core equipment power (PH fan, kiln drive, PA fan, cooler fans, cooler vent fan, cooler drive & roll crusher). The overall savings if compared with a similar plant of 10000 TPD is 8 kcal/kg clinker in specific heat consumption and 2.5 kWh/MT clinker in cooler power.

The clinker temperature is 60+ambient. The power consumption of cooler is 4.67 kWh/MT clinker (includes cooler fans, cooler drive, roll crusher & cooler vent fan). The other parameters reported are as below:

Parameters	Guaranteed	Achieved
Production rate (TPD)	10000	10308
Specific Heat Consumption (kcal/kg clk)	698 @ HOR 410 kcal/kg clk	697 @ HOR 417 kcal/kg clk
Standard cooler losses (VDZ) kcal/kg clinker	90	77.6
Cooler vent air temp (°C)		230
Clinker temp (°C)	65 + ambient	60 + ambient
Cooler fan power (kWh/MT clk)		4.06
Cooler drive+ roll crusher		0.35
Cooler vent fan		0.27

Contact details:

Mr. Kiran Patil
Executive President
Ultratech Cement
Rawan Cement Works
Dist Baloda Bazar-Bhatapara
Chhattisgarh

Email: <u>Kiran.Patil@adityabirla.com</u>

Mr. R Madhusudan Country Head

IKN Engineering (I) Pvt. Ltd Email: madhusudikn@vsnl.com

Case Study No. 3

Upgradation of conventional cooler with FLS Cross Bar cooler at Ultratech

Cement, Reddipalayam, TamilNadu

UltraTech Cement Limited, Reddipalayam unit is located at Reddipalayam village of Ariyalur District in Tamilnadu. It has one kiln of 3250 TPD clinker production capacity.

Ultratech Cement, Reddipalayam has upgrade its 3250 TPD conventional cooler with FLS cross bar cooler. Below table shows the operational parameters before and after the cooler upgrade. Productivity increased by 250 TPD of clinker, cooler loss was reduced by 37 kcal/kg clinker, power consumption is cooler section is reduced by 0.53 kWh/MT clinker and clinker temperature at cooler discharge was reduced by 97°C.

Old	New
Type – CFG 1054 with 1007 CIS	Type – CB 10 X 48 Cross bar cooler with ABC Inlet
Grate Area - 71.2 m ²	Grate Area – 81.4 m²
Cooler Vent Fan – Capacity 105 m ³ /s Static Pressure (– 784)pa	Cooler Vent Fan – Capacity 119 m³/s Static Pressure (– 1500)pa
11 Cooler Fans	7 Cooler Fans
Clinker Breaker (CC 110 X 300)	Heavy duty roller Breaker (MF HRB 310)
Cooler ESP dust conveying – 2 drag chains	Cooler ESP dust conveying – 4 drag chains with Bag Filter

Parameter	Unit	Before	After
Production	TPD	3150	3400
Cooler loss	kcal/ Kg Cl	135	98
Specific Power Consumption	kWh/MT	5.7	5.17
Clinker temp	Deg C	195	98

Contact details:

Mr. V Ganesan Unit Head Ultratech Cement Reddipalayam Cement Works

Dist. Ariyalur

Email: v.ganesan@adityabirla.com

Mr. Anil Kumar C M

Head - Customer Service Projects – India

FLSmidth

Emial: cm.anilkumar@flsmidth.com

ENERGY EFFICIENT TECHNOLOGY 2:

Installation of Waste Heat Recovery System

In the case of dry process cement plants, nearly 40% of the total heat input is available as waste heat from the exit gases of the preheater and cooler. The quantity of heat from preheater exit gases ranges from 180–250 kcal/kg clinker at a temperature range of 300-400°C. In addition, 80-130 kcal/kg clinker heat is available at a temperature range of 200-300°C from the exhaust air of the grate cooler. In some cases, it is observed that although the quantity of thermal energy through preheater discharge gases of the grate cooler exhaust is high, the quality of such heat is low. These heats have various applications such as drying of raw material and coal or generation of power.

As raw material drying is important in a cement plant, heat recovery has limited application for plants with higher raw material moisture content. Often drying of other materials such as slag or fly ash requires hot gases from the cooler or preheater and, in that case, waste heat recovery potential will be further decreased.

Power production utilizing hot gases from the preheater and hot air from the cooler requires a heat recovery boiler and a turbine system. Power generation can be based on a steam process Rankine cycle, the Organic Rankine Cycle (ORC) process or the Kalina process. The steam turbine technology is best known from power plants. While in modern power plants, electric efficiency comes up to 45-46%, the relatively low temperature level from the cooler (200-300°C) limits the efficiency to a maximum of 20-25%.

In large plants, about 22-36 kWh/tonne clinker (25-30% of total requirement) can be generated. This power is considered sufficient to operate the kiln section on a sustained Basis. The electrical efficiency of these WHR installations varies from 10-20%.

The Organic Rankine Cycle (ORC) and Kalina technologies use organic substances or Ammonia (NH₃) as cycling medium, which evaporate at lower temperatures and can therefore produce electric power at a temperature level at which steam turbines cannot otherwise efficiently manage. Nevertheless, the efficiency is normally less than 15%.

Based on the chosen process and kiln technology, 8-10 kWh/t clinker can be produced from cooler exhaust air and 9-12 kWh/t clinker from the preheater gases if the moisture content in the raw material is low and if it required only a little hot gas/air for drying. So in total up to 22 kWh/t clinker or up to 25% of the power consumption of a cement plant can be produced by using these technologies without changes in kiln operation. If higher power production is needed, WHR is in certain competition with the energy efficiency of clinker production, but finally both techniques are aimed at a minimization of unused waste heat. If kiln operation is modified in order to produce more electricity, (higher preheater exit gas and cooler exhaust air temperature) up to 30 kWh/t clinker is possible. Power generation can be further increased by additional co-firing into the boiler or by operating the kiln system with less cyclone stages or bypassing upper stage(s).

The adoption of waste heat recovery systems in Indian cement manufacturing facilities has been relatively slower compared to its global peers. Out of over 190 large cement plants in

the country, only about 20 cement plants have adopted WHR systems. Estimates indicate that the waste heat recovery potential in Indian cement industry is close to 500 MW while the installed capacity till date is only about 275 MW. This indicates the huge opportunity for adoption of waste heat recovery in Indian cement industry.

Waste Heat Recovery System installed capacity in Indian Cement Industry

SI. No.	Company	Installed Capacity (MW)
1	Shree Cement Ltd., Ras	48.0
2	Shree Cement Ltd., Beawar	18.0
3	Birla Corporation Ltd, Satna Cement Works	15.0
4	J K Cement, Nimbahera	13.2
5	J K Lakshmi Cement, Sirohi	12.0
6	The India Cements Ltd., Vishnupuram	7.7
7	Birla Cement, Chanderia	7.5
8	The KCP Ltd., Macherla	2.5
9	Ultratech Cement APCW I	3.8
10	Penna Cement	14.0
11	J K Cement, Mangrol	10.0
12	Chettinad Cement	7.3
13	Rajashree Cement	22.7
14	Ambuja Cement, Rabriyawas	6.5

15	Vicat Sagar	8.4
16	Shree Cement, Line 8	9.8
17	ACCLtd., Gagal	7.5
18	Aditya Cement	20.0
19	Ultratech Cement, Rawan	15.2
20	Ultratech Cement, Hirmi	12.5
21	Ultratech Cement, Awarpur	13.2
	Total	275 MW

Case Study No. 4:

Installation of WHRS at Birla Corporation Ltd., Satna Cement Works, Satna, Madhya Pradesh

Birla Corporation Ltd., Satna is situated in the state of Madhya Pradesh. It comprises of two cement manufacturing sub-units i.e. Satna Cement Works (SCW) & Birla Vikas Cement (BVC). The SCW has one kiln of installed capacity 4500 TPD clinker and the BVC has one kiln of

installed capacity 5200 TPD clinker.

Waste Heat Recovery System is installed in both the lines. WHRS installed capacity at both the lines is 7.5 MW each and generating 6.0 MW each. WHR system project at Cement Works Satna was commissioned in October 2010 & WHR system at BVC was commissioned in February 2011. The hot waste gases coming out from the preheater and clinker cooler is used to generate power thus the greenhouse gas emissions



into the atmosphere are being reduced substantially.

Below table shows the operational parameters of WHRS.

	Designed I	Parameter	Operating Parameter		
Description	Unit-1 Unit-2 (SCW line)		Unit-1 (SCW line)	Unit-2 (BVC Line)	
Year of installation	2010	2011			
Make	Qingdao Jieneng, China	Qingdao Jieneng, China			
Rated capacity	7.5 MW / 3000 RPM	7.5 MW / 3000 RPM	6.0 MW	6.0 MW	
Kiln capacity	4500 TPD	5200TPD	4100 TPD	4900 TPD	
PH exit temperature (WHR boiler inlet temperature)	365 ºC	350 °C	405 °C	330 °C	
WHR boiler outlet temp.	205 ºC	206 °C	188 °C	190 °C	
AQC inlet temp	365 ºC	375 °C	445 °C	350 °C	
AQC outlet temp	91 ºC	91 °C	98 ºC	110 °C	
Savings in Rs. Lakhs/annum			2500 Lakhs	2500 Lakhs	

Turbine details: Model: BN7.5-2.29

Maximum power: 7.5MW Rated power: 6.0MW Economic power: 5.4MW Rated speed: 3000r/min

Rated primary steam pressure: 1.27~2.45MPa Rated primary steam temperature: 310~390°C Rated secondary steam pressure: 0.1~0.3 MPa Rated secondary steam temperature: saturated to

175°C

Rated exhausted steam pressure: 0.008 Mpa Voltage at generator outgoing terminal: 6.6kV

Contact details:

Mr. P S Marwah President Birla Corporation Ltd., Satna Cement Works Satna, Madhya Pradesh Email: psmarwah@satnacement.com

Ms. ChunLe Liu Qingdao Jieneng Power Station Engineering Co Ltd No.18 Shandong Road, Manhattan Plaza, Qingdao, Shandong, China

Case Study No. 5:

Installation of WHRS at J K Lakshmi Cement Ltd., Sirohi

J K Lakshmi Cement is situated at Jaykapuram in Sirohi district of Rajasthan. It has 3 kiln of design capacity 2000 TPD, 4500 TPD & 4500 TPD clinker. The WHR system was installed in 2010 in all three kilns.

The total generation capacity of WHRS installed in 12 MW. The feasibility study was carried out jointly with TECO, Japan.

Sources of heat for boilers

- Exhaust gases from Preheater & Cooler of Kiln-1
- Exhaust gases from Preheater & Cooler of Kiln-2
- Preheater exhaust gases of Kiln-3. It was not feasible to install AQC boiler because waste gases from Kiln-3 cooler are being used in fly ash drier.

Offer for WHR system has been received from the supplier (Thermax in Association with TECO, Japan) for installation of 5 Nos. of Boiler (03 PH Boilers & two AQC Boiler). Recently the plant have added one new boiler in kiln-1 cooler side which has been supplied by Veeson Energy system (P) Ltd.

Waste Heat Recovery System at J K Lakshmi Cement, Sirohi

	WHR PARAMETER -							
Generation Capacity-: 12 MW								
S.NO	PARAMETER	UNIT		KILN -1		KI	KILN -2	
			PH-1	AQC-1A	AQC-1B	PH-2	AQC-2	PH-3
1	Year of installation	year	2010	2010	2013	2010	2010	2010
2	Make		Therma	x Limited	Veeson Energy	Th	ermax Limit	ed
3	Rated Capacity of Steam Generation	ТРН	12	4.1	6.2	21,8	9,4	20.7
4	Operating Capacity	ТРН	12.13	6.15	5.01	17.31	12.55	17.6
5	Net Generation	Units/ Day			294	997		
6	Kiln Capacity	TPD		4300		5	000	5000
7	Boiler Inlet temp(Design)	°C	320	363	366	320	360	320
8	Boiler Inlet temp(operati ng)	°C	300±5	390±20	370±20	315±5	400±20	315± 5
9	Boiler Outlet temp(Design)	°C	205	105	165	205	80	205
10	Boiler Outlet temp(operati ng)	°C	205±1 0	200±5	170±5	205±5	150±10	205± 5
11	Investment	Rs. 1330 Million (1260 Million in 2010 + 70 Million in 2013)						
12	Saving	Rs. 35	Rs. 352.61 Million (On the basis of net generation for FY-13-14)					

Contact details:

Mr. P L Mehta Sr. VP (Works) J K Lakshmi Cement Sirohi Rajasthan

Email: plmehta@lc.jkmail.com

Thermax Ltd D-1, MIDC, R D Aga Road Chinchwad Pune 411 019

Email: boiler.enquiries@thermaxindia.com

ENERGY EFFICIENT TECHNOLOGY 3:

Installation of HT VFD/ SPRS in place of GRR for Speed control

Large slip ring induction motors are used for driving major fans (Pre-heater fan, cooler vent fan, Mill fans etc) in cement industry where they have the advantage of controlled starting characteristics and adjustable speed capability. The rotor has a 3-phase winding, with the three terminals connected to separate slip rings, which are normally connected to a liquid rheostat or resistor bank. The rheostat is used for starting, and can be disconnected once the motor is up to speed.

By changing rotor resistance with the rheostat (Grid Rotor Resistance, GRR), the motor speed can be changed. The speed control of slip ring induction motor by varying the resistance in the rotor circuit results in power loss across the rotor circuit. The amount of power lost across the GRR depends on the speed at which the fan is operating which in turn depends on the operating step of GRR.

The power dissipated in the resistances of GRR is lost as heat. However, by using a variable speed drive or by installing a Slip Power Recovery System (SPRS), the power which is lost can be avoided or recovered. In case of HT VFD's the speed of the motor is controlled by varying the frequency of the supply voltage and the speed of the motor can be controlled in the range of 0-100% of the rated speed of the motor. While installing VFD for slip ring induction motor, care has to take that the rotor terminals has to be short circuited.

Among the various options available for speed control of High Temperature (HT) p rocess fans, such as Grid Rotor Resistance (GRR) control, Slip Power Recovery Systems (SPRS), and so on, HT /MV Variable Frequency Drives (VFD) are found to be the most suitable speed control mechanism, considering the precise control offered and the low inherent system energy losses. Hence, for all major fans, the right selection of fan with HT VFD as a preferred speed control offers the maximum energy saving.

Wherever VFDs are installed, the elimination of control damper is preferred. However, wherever the process needs damper control, a low pressure drop damper can be installed, such as aerofoil multi-louvered damper for cooler fans, slide gate for pre-heater fan.

Case Study No. 6

Installation of MV VFD for PH fan at The Ramco Cements Ltd., Alathiyur

The Ramco Cements Ltd., Alathiyur is situated in Ariyalur district of Tamil Nadu. It has two kiln of 3500 TPD clinker capacity.

The Ramco Cements Ltd., Alathiyur Works has installed MV VFD for their Line-2 PH fan. This has resulted in a significant power savings in the pre-heater fan.

The details of saving and investment are as below:

Description	Before (with GRR)	After (With VFD)
Average power consumption	1862 kW (13.2 kWh/MT clk)	1632 kW (10.9 kWh/MT clk)
Savings in power	230 kW	
Annual Savings	Rs. 4.82 Million	
Investment	Rs. 13.0 Million	
Simple Payback period	32.0 Months	

Contact details:

Mr. S Shanmugam Vice President- Manufacturing The Ramco Cements Ltd., Alathiyur Cement Works Email: ss@ramcocements.co.in

Case Study No. 7

Installation of MV VFD for Kiln Hybrid Bag house fan at Mangalam Cement

Mangalam Cement is situated at Morak Dist. Kota, Rajasthan. It has 2 kiln lines. Kiln-1 is of 3000 TPD clinker.

The plant has installed MV VFD in place of GRR for Line-1 Kiln hybrid bag house fan and achieved a good savings in power consumption.

The details of saving and investment are as below:

Description	Before (with GRR)	After (With VFD)
Average power consumption	290 kW	130 kW
Savings in power	160 kW	
Annual Savings	Rs. 6.97 Million	
Investment	Rs. 6.0 Million	
Simple Payback period	10 Months	

Contact details:

Mr. S S Jain President Mangalam Cement Ltd. P.O. Aditya Nagar Dist. Kota, Rajasthan

ENERGY EFFICIENT TECHNOLOGY 4:

Installation of High Efficiency Separators

Separators are used in material grinding for the purpose of separating the fine particles from the coarse material coming out from the ball mill thus increasing its grinding efficiency. The fine particles are collected as product while the coarse particles are sent back to the mill for further grinding.

A good separator should ensure that the stream of coarse material generally referred to as reject should contain very little fine particles as possible (less than 10-15% retained over 45 micron sieve) and the stream of fine material should contain very low quantities of coarse material. An efficient separator improves the mill performance by avoiding the over grinding of the material and thereby reduces the grinding power consumption. By efficiently separating the coarse particles from the fine particles, it maintains the required product fineness, avoids over-grinding, thereby saving mill power consumption.

High-efficiency separator / classifier improve the grain size distribution of the finished cement and reduce grinding power requirements. The high separation efficiency results in higher proportion of classifier fines which results in decline of the number of circulations of the mill feed and hence the throughput rises by up to 10 -15%. This result in reduction of the specific energy demand compared to grinding circuits with standard separators. High efficiency separators contribute to the energy demand for grinding with about 5 to 8%.

Case Study No. 8

Upgradation of Raw mill & Coal mill classifier with energy efficient classifier & vortex rectifier at The Ramco Cements Ltd., Alathiyur

The Ramco Cements Ltd., Alathiyur is situated in Ariyalur district of Tamil Nadu. It has two kiln of 3500 TPD clinker capacity. The plant has installed Loesche mills for raw material and coal grinding.

The plant has upgraded the raw mill & coal mill classifier with energy efficient classifier &

vortex rectifier and has achieved significant savings in power consumption.

Raw mill-1 was commissioned with rated capacity of 180 TPH at 17% residue on 90 mic and Raw mill-II was commissioned with rated capacity of 215 TPH at 17% residue on 90 mic. Raw mill-1 was successfully upgraded by replacing classifier from LJKS65 to LSKS52 and bigger roller in 2000/2001. Both the raw mills were in smooth operation at output of 215-220 TPH at 17% residue on 90 mic.

The plant details are as below:

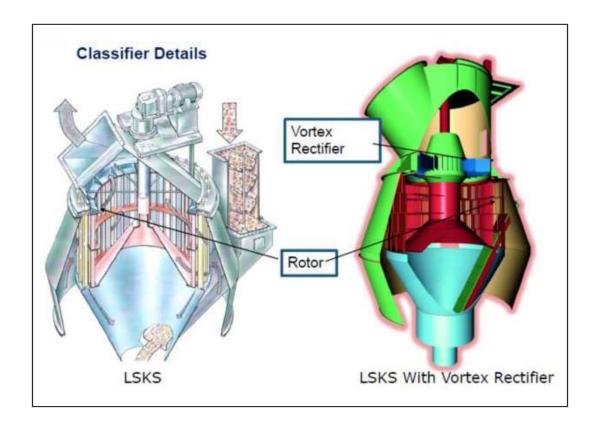
	Line 1	Line 2
Commissioned year	1997	2001
Kiln	FLS-3500 TPD	FLS-3500 TPD
Raw Mill	Loesche LM 38.3	Loesche LM 38.3
Coal Mill	Loesche LM 20.2D	Loesche LM 20.2D
Cement mill	OK 33.4	Loesche LM 56.2+2C

The raw mill was designed for a feed moisture of 5% normal % 10% maximum. Over a period of time the normal feed moisture increased to more than 10% causing the reduced raw mill output to 205-210 tph from 215-220 tph. During monsoon mill output was further reduced to 190 tph. Hot gas generator (HGG) has to be operated to get the output of 210 tph to meet clinker production. HGG consuming about 2 tph of fine coal. Since more heat was required

for drying the gas volume was to be increased in mill and thereby causing higher product residue.

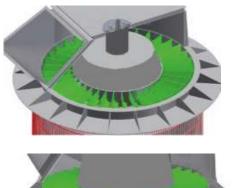
To overcome this problem raw mill classifier was changed from LSKS 52 to LSKS 57.

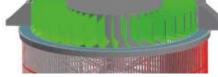
Comparative operating data of Raw Mill-1:


Description	Before Modification	After Modification
Classifier size	LSKS 52	LSKS 57
Feed Moisture (%)	>=10	>=10
Mill output (TPH) dry	207	231
Product residue (212 mic) %	2.3-3.0	1.5-2.0
Product residue (90 mic) %	19-20	16-17
Specific power: kWh/Mt		
Mill	5.56	4.55
Fan	6.33	6.28
Total specific power	11.89	10.83

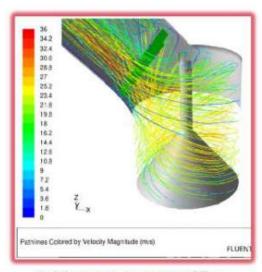
Comparative operating data of Raw Mill-2:

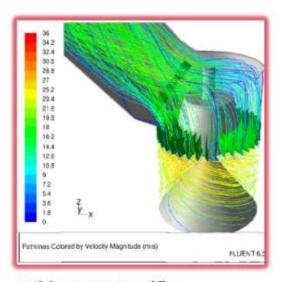
Description	Before Modification	After Modification
Classifier size	LSKS 52	LSKS 57
Feed Moisture (%)	>=10	>=10
Mill output (TPH) dry	210	233
Product residue (212 mic) %	2.3-3.0	1.5-2.0
Product residue (90 mic) %	19-20	15-16
Specific power: kWh/Mt		
Mill	5.57	4.42
Fan	7.29	6.52
Total specific power	12.86	10.94




This has resulted in saving of about 1.2 kWh/MT in specific power drawn by mill & fan.

Raw mill 38.3 Classifier upgradation:





The installation of vortex rectifier for the classifier has resulted in restoring a linear flow in the ductwork & maintaining homogeneous velocity distribution thus resulting in a low dp and leading to a reduced specific energy consumption.

Vortex Rectifier

Without Vortex Rectifier

Hard twisted gas flow created by high speed rotation of classifier rotor

With vortex Rectifier Uniform and Laminar Flow

Contact details:

Mr. S Shanmugam Vice President- Manufacturing The Ramco Cements Ltd., Alathiyur Cement Works Email: ss@ramcocements.co.in

Cement mill Separator performance of best operating plant

During the plant energy audit, CII-GBC has observed separator performance for few of the best operating plants and the observed parameters are summarized in below table.

A good separator should ensure that the stream of coarse material generally referred to as reject should contain very little fine particles as possible (less than 10-15% retained over 45 micron sieve) and the stream of fine material should contain very low quantities of coarse material. An efficient separator improves the mill performance by avoiding the over grinding of the material and thereby reduces the grinding power consumption. By efficiently separating the coarse particles from the fine particles, it maintains the required product fineness, avoids over-grinding, thereby saving mill power consumption.

Parameters	Unit	Plant A	Plant B
Production	ТРН	210	152
Separator reject at -45 mic	%	15	21
Sep loading	kg/m³	0.86	0.70
Sep fan power	kWh/MT	1.55	1.18
Sep vent fan flow	% of separator fan flow	10	4

ENERGY EFFICIENT TECHNOLOGY 5:

Increasing the Thermal Substitution Rates in Cement Plants

Alternative fuel use in the Indian cement industry is at very low levels; the country's average stands at less than 1% of Thermal Substitution Rate (TSR). Several nations globally have utilized cement kilns as an effective option for their country's industrial, municipal and hazardous waste disposal. This creates a win-win situation for both the local administration and the cement plants: the administration utilizes the infrastructure already available at cement kilns, thereby spending less on waste management, and the cement kilns are paid by the polluter for safe waste disposal, as well as having their fuel requirements partly met.

Cement kilns can theoretically operate with 100% TSR, thereby completely off-setting the need for primary fossil fuels. However, several other enabling factors, such as the installati on of adequate pre-processing and blending facilities, and the availability of alternative fuels without technical limitations (heat content, larger proportion of detrimental trace elements, chlorine, sulfur and so on) should be considered.

Cement kilns can exhibit significantly varying behaviour depending on the type of alternative fuel substituted, and hence the technical competence of the industry should be adequate to face these challenges which come alongside a TSR increase. With extensive national and global expertise available, the Indian cement industry today is technically ready for adopting higher TSR rates.

Increased TSR in the cement industry would be possible if the waste legislation in the country progresses in line with the industry's increased need for alternative fuels. Following steps are needed for accelerating the use of AFR.

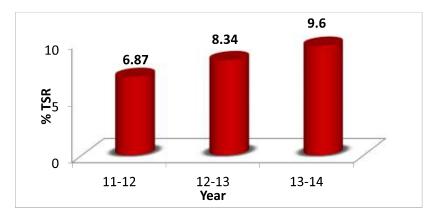
- 1. First and foremost, a change in perspective amongst policy makers is required to explore cement kiln utilization of waste disposal.
- 2. Stringent waste legislation is needed which will enable high heat content waste to be co-processed in cement kilns rather than in incinerators where the heat content goes largely unutilized. It is important that the legislation related to cement kilns is as stringent as for dedicated waste facilities.
- To ensure availability and consistency of alternative fuel quantity and quality, waste legislation in the country should enable effective waste collection, treatment and processing by introducing a new service sector which works as an effective intermediary between waste generators and the cement industry.
- 4. The pricing of waste is also a key factor to ensure waste minimization at source (to reduce disposal costs for waste generators) and to ensure zero or negative cost to cement manufacturers (encouraging them to install the expensive handling, storage and firing facilities at their premises) for increased TSR.
- 5. The social acceptance of using wastes as alternative fuels in cement kilns by the society and consumers.

Alternative Fuel utilization at Ultratech Cement, Reddipalayam Cement Works, TamilNadu

UltraTech Cement Limited, Reddipalayam unit is located at Reddiapalayam village of Ariyalur District in Tamilnadu. It has one kiln of 3250 TPD clinker production capacity.

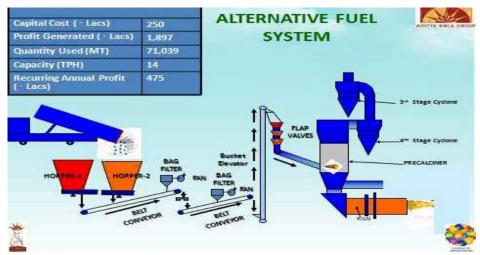
Ultratech Cement, Reddipalayam Cement Works had taken innovative initiatives of utilization of waste fuels such as DORB, tyre chips, paint sludge etc. The focus was on these waste high calorific material which has potential to reduce the fuel cost substantially. Though the concept of alternate fuel was prevalent in the developed countries, where the government was very supportive, it was totally a new concept in Indian Industry.

Reddipalayam Cement Works had been the pioneer in this regard in the cement industry by taking a lead as to how economically it could use the alternative fuels which had immense potential that too without affecting the product quality. Major initiatives were undertaken for implementing this project were: finalizing the technology, exploring the availability of different types of alternate fuels, their trial runs and subsequently plant scale trials, obtaining clearance from State & Central Pollution Control Boards and other regulatory agencies for usage of the waste fuels.


Achievements

Manufacturing cost reduction of Clinker by using alternate fuels
Safe disposal of Hazards waste, agro waste, paint sludge from automobile industry
Conservation of resources – Reduced use of fossil / non-renewable fuels.
Fossil fuel (coal, lignite) is non-renewable source of heat energy. By way of co
incineration of high calorific waste material (Agro waste and industrial generation the
plant is able to replace as high as 10% to 15% of fossil fuel.
Reduction of Green Gas Emission
Protect environment and controlling emissions

This innovative project has been registered as CDM (Clean Development Mechanism) project. This is a very significant occurrence in any cement industry and by reducing CO₂ emission, this project is going to benefit the unit by around 32 Cr over the years.



The various alternative fuels used at Reddipalayam Cement Works are:

DORB, Cashew nuts shells, Plastic Waste, Bio-compost, Municipal Solid Waste, Coir Waste/dust, Coffee husk, Palm seed shell, Wood strips, Shredded tyres, Wooden dust, Paint sludge, Carbon powder etc.

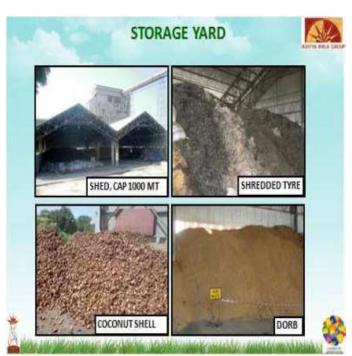
Issues faced during implementation

Since various alternate fuels have different chemical compassion and characteristics like ash %, alkalis content and harmful metals / chemicals etc., it was required to adjust the chemistry of other inputs to maintain consistent quality in the output. It was a challenge to Quality Control team, which they could deliver with their in-house research. Since there was no impact on the quality, the customers were not affected.

Alternative Fuel Feeding System at Site

The unit had modified the process to handle multiple fuel in pre-calciner as shown below

1. Installation of plastic Shredding machine (Capacity 400 Kg/Hr): Hazardous plastic materials are shredded to small pieces and dispose in calciner for combustion process.



2. Wood Cutting machine (Capacity 300Kg/Hr): Wood cutting machine scrap woods cut down to small pieces and fed to calciner for combustion.

3. Shredder Machine: Plastic shredder machine 10 TPH with mechanised system .This helps to reduce the size of solid AFR less than 50 mm; however for plastic material the size is not reduced below 300 mm therefore a screening arrangement is planned underneath the discharge of new shredder, which will collect the bigger size plastic material and recirculation back into shredding machine for rethreading.

4. Apron feeder: Apron feeder width 1200 mm is installed and commissioned to avoid hopper

discharge chute jamming thereby improve flow ability.

Contact details:

Mr. V Ganesan Unit Head Ultratech Cement Reddipalayam Cement Works

Dist. Ariyalur

Email: v.ganesan@adityabirla.com

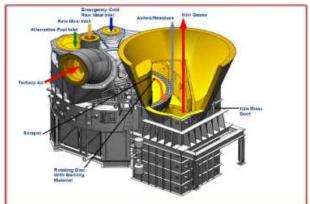
Installation of HOTDISC for increasing thermal substitution rate at Kesoram Industries Ltd., Unit Vasavadatta Cement, Sedam, Karnataka.

Vasavadatta Cement is a division of Kesoram Industries Ltd., situated at Sedam, Karnataka. It has 4 kiln lines of operating capacity 2400 TPD, 3600 TPD, 4500 TPD & 4500 TPD.

For increasing the thermal substitution rate and to feed different types of alternative fuels Vasavadatta Cement has installed HOTDISC. The HOTDISC is a safe, simple and effective combustion device that maximizes the substitution of fossil fuels by alternative fuels in a controlled and environmentally sound manner. The hotdisc is installed at pyro-processing unit-3 in September'12.

This State of art technology is first of its kind in India, for cement industry to utilize Refused Derived waste & Tyres in cement rotary kiln as alternative fuel in efficient

regulations. The Hotdisc is supplied by FLSmidth.


The Hot Disc is a simple combustion device, integrated with the pre-heater and calciner systems. The HOTDISC gives the flexibility to burn a wide variety of solid waste in sizes up to 1.2 m – from sludge or grains to whole truck tyres.

Features of HOTDISC Technology:

- Combustion of Alternative Fuels takes place in Oxygen rich atmosphere.
- Variable retention time based on the type of Alternative Fuel is possible to ensure complete combustion.
- Can accept lumpy materials Whole truck Tyre, baled material, etc, apart from the small size materials.
- ➤ Longer retention time, 10-45 minutes
- Calciner TSR of upto 60 % can be achieved.

rotary kiln as alternative fuel in efficient way with compliance with all the environmental

Working principle:

As an integrated part of the kiln system, the HOTDISC is added onto the calciner and functions as a moving hearth furnace. The waste fuels are introduced via the tertiary air duct to the slowly rotating disc where they start to burn in fully oxidising conditions when meeting the hot tertiary air. When alternative fuel, preheated raw meal and tertiary air are fed into the HOTDISC, it produces combustion gases, partly calcined meal and combustion residues. These are then processed in the calciner along with the other streams that go into the calciner. The result is calcined meal ready for the kiln and well-controlled emissions.

Fig: Hot disc reactor at Vasavadatta Cement.

Benefits of Hotdisc:

- Reduction in Calciner coal firing ~ 7 TPH (TSR >30% based on AF availability)
- Reduction in laterite consumption (0.4%) due to steel wires in tyres
- Nox reduction (PPM) at main stack from base line test: 35%

Alternative fuel feeding rate & other parameters with Hotdisc at Vasavadatta Cement:

- Feed rate of shredded tyres: 3.5 TPD
- ➤ Feed rate of RDF: 10 TPH
- Speed of Hot disc:-4-5 RPH
- > Temp level inside hot disc: 1150 °C
- > Preheater meal diversion towards hotdisc: 20%

Fig: RDF & waste tyre handling system

Fig: Whole tyre feeding system

Alternative fuel consumption at Vasavadatta Cement:

Different Types of AFR Consumed (in MT)	2012-13	2013-14	Coal Saved Indian	Coal Saved Imported	% Share of AFR	Rs.in lac Saved
Benzo Feron	359.26	640.81				
Tyre Chips	1,980.06	251.00				
Carbon Black (Cement	572.94	9434.73				
Plant)						
PU Waste	19.13	17.46	4 4076	2404	2 576	445 40
Rubber Chips	0	875.55	14876	2484	2.576	415.48
Plastic Waste	0	1047.66				
Stalk (Agricultural Waste)	0	1263.78				
N-butonol	0	33.51				
Muncipal Waste	85.68	36.93				

Contact details:

Mr. C K Jain

Sr. Jt. President (E&O) PO: Sedam, Dist Gulbarga

Karnataka

Email: c.k.jain@vasavadattacement.com

Mr. Avanish Karrahe FLSmidth Pvt. Ltd. 34, Egatoor, Kelambakkam (Rajiv Gandhi Salai, Chennai)

Tamil Nadu

Email: Avanish.Karrahe@flsmidth.com

ENERGY EFFICIENT TECHNOLOGY 6:

Increase the PPC Production / % addition of Fly Ash in PPC Manufacturing

The increased use of fly ash in Portland Pozzolona Cement (PPC) directly impacts the reduction of clinker factor in cement thereby reducing fuel combustion and reduced limestone calcinations.

Fly ash conforming to standard IS: 3812 (1) 2003 can be used (up to 35% maximum) in the manufacture of PPC as per IS: 1489 (part 1) 1991. The role of fly ash in PPC is attributed to the pozzolanic action leading to a contribution to strength development. Studies carried out on the Indian fly ash samples have indicated that the range of glass content varies between 15 and 45% and the Lime Reactivity (LR) between 2.0 and 7.0 mpa.

The fine fraction of fly ash below 45 micron is a major portion, and contributes predominantly to the performance of PPC. This particular aspect of fly ash is very important with a view to enhance the % of use of fly ash in PPC and concrete and needs further thorough and systematic investigations to arrive at adoptable methodol ogies of using finer fly ash at higher levels. The quality of the clinker and suitable and adequate admixture addition will improve the fly ash absorption. The addition of plasticizers will help in fly ash absorption in concrete applications.

The average fly ash % utilisation in Indian cement industry is around 27%.

Increasing fly ash addition in PPC by superfine fly ash grinding-Ambuja Cement Rabriyawas, Rajasthan

Ambuja Cement, Rabriyawas is situated in Rabriyawas village in Pali district in Rajasthan. It

has one kiln with capacity 6000 TPD upgraded in Sept 2007. It has 2 cement mills. One is ball mill with 120 TPH capacity and other mill is ball mill with roller press as pregrinder of 250 TPH capacity.

Ambuja Cement Ltd., Rabriyawas has increased the fly ash consumption by 2% from 26.62% to 28.48% by adding 2% superfine fly ash in PPC. This leads to reduction of clinker factor to 62.5%. The details of the projects is as below:

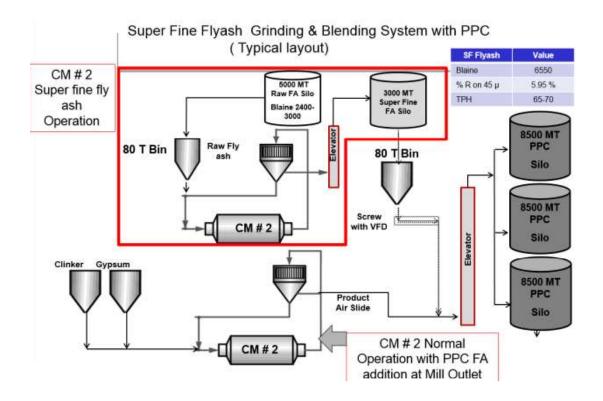
Objective:

- > To produce activated superfine fly ash from Cement mill-2
- > Enhancement of fly ash addition percentage with minimum investment cost
- ➤ To create data base & practical approach prior to install roller press in CM-1 & continuous grinding of fly ash in CM-2 with proper blending system.

Concept:

- Raw fly ash was grounded in CM-2 to produce superfine fly ash (5% R on 45 μ).
- Installation of superfine fly ash dozing system to PPC product air slide to enhance fly ash doses.

Modification in Cement Mill-2 prior to grinding of fly ash:


- Cement mill-2 was selected for the trial run
- Modification in the mill feeding system to feed the raw fly ash into the mill inlet from 80 MT bin on consistent basis
- Grinding media of Chamber-I was changed from existing 90,80,70 & 60 mm to 25 mm approx 65 MT
- ➤ Diverter mounting at ESP & product air slide for taking material towards fly ash elevator instead of product air slide
- Modification in mill product transport air side to store superfine fly ash in 3000 MT silo
- Addition of Superfine fly ash into PPC product air slide with in-house air slide blender arrangement before the final mixing into silo feed bucket elevator.

Cost economics:

Description	Rs. Lakhs
Installation & erection of air slides and screw conveyor with VFD arrangement	6.50
Mill preparation for super fine fly ash grinding i.e. unloading/loading of grinding media	0.65
Total	7.15

Circuit diagram:

Fly ash comparison: Received Vs Ground fly ash:

Flyash	Receipt	Ground
45 μ	52.36	5.95
90 μ	32.84	0.45
212 μ	11.43	0.00
Blaine	394	655

Trial taken with day average grinding PPC (28% flyash) and by adding additional 2% and 4% separate ground flyash respectively.

It was found that 3 days and 7 days cement strength improved by 2%.

Action Planned to increase the super fine fly ash by ~ 4 % i.e 28 to 32 %

- Installation of good screw blender arrangement before feeding to silo feed elevator to further improve the cement quality to enhance addition of super fine fly ash
- Planning to install one 10 TPH floating Roller Grinding Mill / 15 TPH Ball Mill at Power plant itself to solve dual purpose
 - Avoid Cement Mill -2 frequent changes to prepare the mill for FA Grinding e.g. loading / unloading of Grinding media (Costing Rs 0.65 Lacs / Change)
 - Ground super fine fly ash received from the Power plant will directly feed into 80 MT bin, with minimum power cost due to synchronization of cement plant load management resulted wastage of CPP power on Grid at low tariff (0.90 Paisa/unit)

Contact details:

Mr. Rajesh Kothari

President

Ambuja Cement Limited

Unit: - Rabriyawas

Tehsil: Jaitaran Dist. Pali

Rajasthan

Email: rajesh.kothari@ambujacement.com

Summary & Conclusion:

As can be seen from the information presented in this report that the implementation of the above identified energy efficient technologies has resulted in a good amount of energy saving in the cement plants. Majority of the Indian cement plants have the potential to replicate the above identified technologies and improve their energy efficiency levels for improving their profitability and other statutory requirements like achieving PAT (Perform Achieve & Trad e scheme by BEE) targets, carbon foot print reduction targets.

Apart from the energy efficient technologies presented in the booklet, several other energy efficiency improvement activities like reducing the pressure drop across the ducts, cyclone etc., reducing the false air infiltration, operating the fans and pumps at its best operating efficiency points can also bring in good amount of energy savings.

The case studies presented here is for information dissemination of the energy efficient technologies with an objective to promote & accelerate the adoption of energy efficient technologies. The information presented for each technology is collected from various sources, cement industry, technology suppliers and CII energy award questionnaire & award presentation. This booklet is an effort to help the cement industry to overcome the information and knowledge barriers in making transition towards the energy efficiency pathway.

ABBREVIATIONS:

AFR - Alternate Fuel & Raw Materials

AQC - Air Quench Cooler

DCs - Designated Consumers

GRR - Grid Rotor Resistance

HT - High Tension

ILC - In Line Calciner

kcal - kilo Calorie

Kg - Kilogram

kW - kilowatt

kWh - kilowatt hour

MT - Metric Tonne

MTPA - Metric Tonnes per Annum

MV - Medium Voltage

MW - Mega Watt

PAT - Perform Achieve & Trade

PPC - Pozzolana Portland Cement

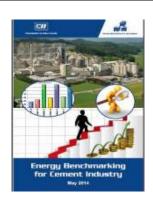
SPRS - Slip Power Recovery System

TPD - Tons Per Day

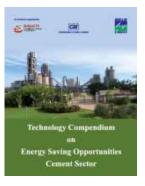
TPH - Tons Per Hour

TSR - Thermal Substituion Rate

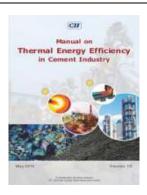
VFD - Variable Frequency Drive


WHRS - Waste Heat Recovery System

Publications by CII-Godrej GBC as part of World Class Energy Efficiency


Manual on Energy Benchmarking for Cement Industry

With an objective to further increase the knowledge transfer among the cement industry, CII – Godrej GBC has prepared the benchmarking manual for the Indian Cement Industry in 2014. The manual includes best achieved specific energy consumption values over a wide range of plant configurations. The manual also includes various best practices and latest technologies to be adopted for achieving such lower specific energy consumption.


<u>Technology Compendium on Energy Saving</u> <u>Opportunities- Cement Sector</u>

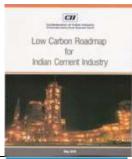
CII – Godrej GBC undertook the initiative of preparing Technology Compendium on Energy Saving Opportunities: Cement Sector. The Technology Compendium comprises of various thermal and electrical energy efficiency improvement opportunities. The compendium was launched in August 2013, by Dr. Ajay Mathur, Director General, BEE, during the CII Energy Efficiency Summit at Hyderabad.

Manual on Thermal Energy Efficiency in Cement Industry

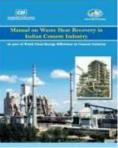
The Government of India in consultation with Bureau of Energy Efficiency (BEE) has released the PAT targets for the period from 2012-13 to 2014-15 in relation to their current level of energy consumption. Cement industry needs to focus more on Thermal Energy Efficiency in its endeavour to achieve the PAT targets. This manual serves as a ready reckoner on thermal energy efficiency including latest norms and best practices to reduce thermal Specific Energy Consumption.

<u>Case study Manual on Alternative Fuels & Raw</u> Materials Utilization in Indian Cement Industry

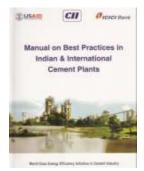
The purpose of this manual is to act as catalyst for promoting increased use of alternate fuel & raw materials in Indian Cement Industry through co processing of wastes and reducing cost of clinker production, thereby improving performance competitiveness of individual cement plants.


Cement Formulae Handbook

The formula book is a compilation of useful formulas, norms available at various sources, intended as a store of information which acts as a quick reference for the plant personnel. This was very well accepted by the Indian cement plants and subsequently the second edition was released during the annual conference in 2010.


Low Carbon Roadmap for Indian Cement Industry

The report is an effort to create a road map for Indian Cement Industry to achieve the reduction in its Green House gas emission intensity. This is meant for due contemplation, reflection and necessary action from the Indian cement industry in its road map towards a low carbon growth.


Manual on Waste Heat Recovery in Indian Cement Industry

The manual focuses on description of technologies available for Waste Heat Recovery Potential and installations in the Indian Cement Plants. This also discusses the advantages and also the barriers towards the deployment of WHR Technologies.

Manual on Best Practices in Indian & International Cement Plants

The publication was brought out as part of world class energy efficiency which covers the energy conservation measures carried out in the six cement plants as part of the mission and the experience and learning on Waste Heat Recovery from international mission carried out in Germany, Belgium, UK, Switzerland and Japan cement plants.

Energy Efficiency Guidebook for Electrical Engineers

The guidebook is a quick reference for electrical engineers that covers the fundamental theory of basic electrical equipment and provides the latest information on electrical systems. It also throws light on the possible energy saving opportunities and newest trends in electrical and lighting systems.

About Confederation of Indian Industry (CII)

The Confederation of Indian Industry (CII) works to create and sustain an environment conducive to the development of India, partnering industry, Government, and civil society, through advisory and consultative processes. CII is a non-government, not-for-profit, industry-led and industry-managed organization, playing a proactive role in India's development process. Founded in 1895, India's premier business association has over 7200 members, from the private as well as public sectors, including SMEs and MNCs, and an indirect membership of over 100,000 enterprises from around 242 national and regional sectorial industry bodies. With 64 offices, including 9 Centres of Excellence, in India, and 7 overseas offices in Australia, China, Egypt, France, Singapore, UK, and USA, as well as institutional partnerships with 312 counterpart organizations in 106 countries, CII serves as a reference point for Indian industry and the international business community.

CII-Sohrabji Godrej Green Business Centre (CII-Godrej GBC), a division of CII is India's premier development institutions, offering advisory services to the industry on environmental aspects and works in the areas of Green Buildings, Energy efficiency, environment management, renewable energy, green business incubation and climate change activities.

About Shakti Sustainable Energy Foundation

Shakti Sustainable Energy Foundation works to strengthen the energy security of India by aiding the design and implementation of policies that support energy efficiency and renewable energy.

CII - Sohrabji Godrej **Green Business Centre**

Survey No. 64, Kothaguda Post, Near HITEC City, Hyderabad - 500 084, India. Tel: +91 40 44185111. Fax: +91 40 44185189.

Website: www.greenbusinesscentre.com

For further information, kindly contact: P V Kiran Ananth

Senior Counsellor

Email: kiran.ananth@cii.in